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A model is developed that describes the error-field response of a toroidally rotating tokamak plasma
possessing a strongly shaped poloidal cross-section. The response is made up of nondissipative ideal
and dissipative nonideal components. The calculation of the ideal response is greatly simplified by
employing a large aspect-ratio, constant pressure plasma equilibrium in which the current is entirely
concentrated at the boundary. Moreover, the calculation of the resonant component of the nonideal
response is simplified by modeling each resonant surface within the plasma as a toroidally rotating,
thin resistive shell that only responds to the appropriate resonant component of the perturbed
magnetic field. This approach mimics dissipation due to continuum damping at Alfvén and/or sound
wave resonances inside the plasma. The nonresonant component of the nonideal response is
neglected. The error-fields that maximize the net toroidal locking torque exerted on the plasma are
determined via singular value decomposition of the total response matrix. For a strongly dissipative
plasma, the locking torque associated with a general error-field is found to peak at a beta value that
lies above the no-wall beta-limit, in accordance with experimental observations. © 2010 American
Institute of Physics. #doi:10.1063/1.3504227$

I. INTRODUCTION

Tokamak1 plasmas are highly sensitive to externally
generated, static magnetic perturbations that break
axisymmetry.2–6 Such perturbations, which are convention-
ally termed error-fields, are present in all tokamak experi-
ments because of imperfections in magnetic field-coils. An
error-field can drive magnetic reconnection in an otherwise
tearing stable plasma, giving rise to the formation of locked
!i.e., nonrotating" magnetic island chains at internal resonant
magnetic flux-surfaces.7 Such chains severely degrade global
energy confinement.8 Fortunately, the !highly sub-Alfvénic"
toroidal rotation that occurs naturally in all tokamak plasmas
affords them some level of protection against locked mode
formation. To be more exact, rotation induces localized
shielding currents at the various resonant surfaces within the
plasma, and these currents suppress driven reconnection.
Provided that this suppression is sufficiently strong, it is
an excellent first approximation to say that the response of
a rotating tokamak plasma to a low amplitude error-field
is governed by linearized marginally stable ideal-
magnetohydrodynamics !MHD".9 Unfortunately, the residual
magnetic reconnection at the resonant surfaces, which is as-
sociated with plasma dissipation, produces a toroidal locking
torque that slows the plasma rotation. Moreover, the rotation
is suddenly arrested when the error-field amplitude exceeds a
certain critical value, which permits locked mode formation
to proceed without further hindrance.10,11 This scenario is
generally referred to as error-field penetration. The critical
error-field amplitude required to trigger penetration can be as
small as 10−4 of the equilibrium toroidal field-strength.

This paper investigates the relationship between the har-
monic content of an error-field and the associated locking
torque that is exerted on the plasma. Such an investigation is

crucial to the determination of which error-field harmonics
need to be cancelled out by error-field correction coils in
order to prevent locked mode formation. Of course, the rela-
tionship in question is very simple in a quasicylindrical to-
kamak !i.e., a large aspect-ratio, low-beta, tokamak with a
circular poloidal cross-section". As is well-known, there is no
coupling between different poloidal and toroidal harmonics
in a cylindrically symmetric plasma equilibrium. Conse-
quently, an m, n error-field—where m is the poloidal mode
number and n the toroidal mode number—only exerts a
torque at the m, n resonant surface—which is defined as the
magnetic flux-surface that satisfies the resonance condition
q=m /n, where q is the safety-factor !i.e., the inverse of the
rotational transform". Conversely, if no such surface lies
within the plasma then no torque is generated. It follows that
the only harmonics of an error-field which need to be can-
celled out in a quasicylindrical tokamak are those which are
resonant within the plasma. Unfortunately, real tokamak
plasmas are not quasicylindrical—mainly, because they pos-
sess magnetic flux-surfaces with highly elongated and trian-
gular poloidal cross-sections. The consequent deviations
from cylindrical symmetry give rise to coupling between po-
loidal harmonics with different mode numbers.12 Under these
circumstances, recent numerical calculations have demon-
strated that the relationship between the harmonic content of
an error-field and the locking torque can be substantially
different to that in a quasicylindrical tokamak.13–15 The first
goal of this paper is to construct a simplified !relative to the
aforementioned numerical calculations" model of the former
relationship that is as realistic as possible. The second goal is
to incorporate the nonideal response of the plasma !see be-
low" into the model in a self-consistent manner !this was not
attempted in Refs. 13–15".
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The response of a tokamak plasma to an error-field can
be divided into ideal and nonideal components. The ideal
response consists of perturbed currents produced by the
error-field induced distortion of the equilibrium magnetic
flux-surfaces, in combination with the localized shielding
currents that suppress driven magnetic reconnection at the
internal resonant surfaces. As the name suggests, the ideal
response of the plasma is that predicted by linearized mar-
ginally stable ideal-MHD.9 The main difference between the
error-field response of a quasicylindrical and a highly shaped
tokamak is that, in the former case, the ideal response is
dominated by the shielding currents, whereas, in the latter
case, the shielding currents only form a relatively small part
of the overall ideal response.13–15

The nonideal response of the plasma cannot be described
by ideal-MHD. The resonant component of this response is
associated with dissipation !and residual reconnection" at the
plasma’s internal resonant surfaces. Moreover, it is the reso-
nant nonideal response which is responsible for the locking
torque acting on the plasma. The nonresonant component of
the nonideal response is associated with nonambipolar par-
ticle transport induced by the applied error-field’s lack of
axisymmetry16 and gives rise to an electromagnetic braking
torque acting on the plasma. However, such a torque cannot
directly trigger error-field penetration !since it does not have
the correct type of nonmonotonic variation with the plasma
rotation".17 Hence, in this paper, we shall only consider the
resonant component of the nonideal plasma response.

The calculation of the ideal plasma response can be
greatly simplified by adopting a large aspect-ratio equilib-
rium in which the pressure is uniform, and the current en-
tirely concentrated at the boundary.18 This approach allows
us to replace the volume distributed perturbed currents which
constitute the plasma’s ideal response by equivalent surface
currents flowing on the plasma boundary. As is well-known,
it is possible to allow for significant vertical elongation of a
constant pressure equilibrium in a relatively straightforward
manner by solving Poisson’s equation !for the perturbed
magnetic potential" in orthogonal elliptic coordinates.19 Un-
fortunately, this method of solution cannot be directly gener-
alized to allow for significant plasma triangularity because,
in the presence of triangularity, it is impossible to find an
orthogonal coordinate system that is nonsingular both inside
and outside the plasma. One alternative is to employ Green’s
function technique to solve Poisson’s equation.20 However,
this solution method is highly inconvenient since it entails
the evaluation of singular integrals. In this paper, a much
more convenient solution method is developed which uses
separate nonorthogonal and orthogonal curvilinear coordi-
nate systems inside and outside the plasma, respectively.

Finally, the calculation of the resonant nonideal response
of the plasma can be simplified by modeling each internal
resonant surface as a toroidally rotating, thin resistive shell
that only responds to the appropriate resonant harmonic of
the perturbed magnetic field. In a further simplification, it is
assumed that the shells are all located at the plasma bound-
ary. This approach allows us to replace the internal perturbed
currents which make up the plasma’s resonant nonideal re-
sponse by equivalent surface currents flowing on the plasma

boundary. In addition, the approach mimics dissipation due
to continuum damping at closely separated Alfvén resonances
straddling the resonant flux-surfaces of a toroidally rotating
!at a highly sub-Alfvénic velocity" tokamak plasma interact-
ing with a static magnetic perturbation.21–23 More realisti-
cally, the approach also mimics continuum damping at sound
wave resonances located close to each resonant surface.24,25

II. PLASMA EQUILIBRIUM

A. Normalization

All lengths are normalized to the horizontal semi-axis of
the plasma, a, and all magnetic field-strengths to the on-axis
vacuum toroidal field-strength, B0.

B. Large aspect-ratio ordering

The inverse aspect-ratio of the plasma is defined as

!%
a

R0
, !1"

where R0 is the major radius at the magnetic axis. In the
following, the conventional large aspect-ratio ordering,

0" !# 1, !2"

is adopted.

C. Coordinate systems

Let x, y, z be a right-handed Cartesian coordinate system
such that x, y, and z are, respectively, horizontal and vertical
coordinates in the poloidal plane, and a pseudotoroidal coor-
dinate that is periodic with period 2$ /!. The effective mag-
netic axis of the plasma lies at x=y=0.

Let r, %, & be a right-handed, axisymmetric, curvilinear
coordinate system which is such that r!x ,y", %!x ,y", and
&%!z are, respectively, a radial coordinate !in the poloidal
plane", a poloidal angle, and a pseudotoroidal angle. The
magnetic axis lies at r=0, and the outboard midplane of the
plasma corresponds to %=0. Let er%#r / &#r&, e%%#% / &#%&,
and e&%#& / &#&&.

D. Plasma boundary

The plasma boundary corresponds to the axisymmetric
toroidal surface r=1. Let the parametric equation of the
boundary in the poloidal plane, x=xp!%", y=yp!%", take the
form

xp!%" = cos % + ' cos 2% , !3"

yp!%" = ( sin % − ' sin 2% , !4"

where ()0 is the plasma vertical elongation and ')0 the
plasma triangularity.

E. Pressure balance

The plasma equilibrium used in this paper is such that
the internal pressure is uniform, and the current entirely con-
centrated on the boundary.18–20 Thus, the internal magnetic
field can be written as
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B!r" 1,%" =
1 − !bi

1 + !x!r,%"
e&, !5"

where bi'O!1" is a positive constant. Note that there is no
internal poloidal field. The external magnetic field takes the
form

B!r* 1,%" = !Br!r,%"er + !B%!r,%"e% +
e&

1 + !x!r,%"
, !6"

where Br ,B%'O!1". However,

Br!1+,%" = 0, !7"

since the boundary must be a magnetic flux-surface. Let

Bp!%" % B%!1+,%" !8"

be the poloidal magnetic field !normalized to !B0" immedi-
ately outside the boundary.

The uniform internal plasma pressure !normalized to
B0

2 /2+0" is written as

P = !, , !9"

where ,'O!1" is a positive constant that corresponds to the
conventional toroidal beta divided by !. Furthermore, pres-
sure balance across the boundary,

P + B2!1−,%" = B2!1+,%" , !10"

yields18–20

Bp!%" = !2,#-p + xp!%"$"1/2 + O!!" , !11"

where -p'O!1" is a positive constant. Finally, the edge
safety-factor of the plasma is defined as

qp =
1
$
(

0

$ hp

Bp
d% , !12"

where

hp!%" % )*dxp

d%
+2

+ *dyp

d%
+2,1/2

= !1 − Ep"−1!1 + Ep
2 + 4Tp

2 − 4EpTp cos %

+ 2Ep cos 2% − 4Tp cos 3%"1/2. !13"

Here,

Ep =
( − 1
( + 1

, !14"

Tp =
2'
( + 1

!15"

are convenient measures of the plasma ellipticity and trian-
gularity, respectively.

III. PERTURBED PLASMA EQUILIBRIUM

A. Perturbed magnetic field

Consider the response of the plasma to a small ampli-
tude, quasistatic, externally generated, nonaxisymmetric
magnetic perturbation. According to linearized marginally
stable ideal-MHD theory,9 the perturbed internal plasma

current and pressure are both zero in a constant pressure
equilibrium. Hence, the perturbed magnetic field within the
plasma boundary can be written in the form

'B = i! # V , !16"

where

#2V!r,%,&" = 0. !17"

Of course, the perturbed magnetic field in the vacuum region
outside the boundary can also be written in this form.

B. External solution

In the external region, r*1, let

x!r,%" = !1 − Ep"−1*r cos % −
Ep

r
cos % +

Tp

r2 cos 2%+ ,

!18"

y!r,%" = !1 − Ep"−1*r sin % +
Ep

r
sin % −

Tp

r2 sin 2%+ . !19"

It follows that &#r&=r&#%&=h−1 and #r ·#%=0, where

h!r,%" = !1 − Ep"−1*1 +
Ep

2

r4 +
4Tp

2

r6 −
4EpTp

r5 cos %

+
2Ep

r2 cos 2% −
4Tp

r3 cos 3%+1/2

. !20"

Note, from Eqs. !3", !4", and !13"–!15" that x!1,%"=xp!%",
y!1,%"=yp!%", and h!1,%"=hp!%". The r, %, & coordinate sys-
tem is nonsingular throughout the external region as long as
'"( /2.

Let

V!r,%,&" = -
m

Vm!r"ei!m%−n&", !21"

where n*0 is the toroidal mode number of the external
magnetic perturbation. In the limit n!#1, Laplace’s equation
!17" yields

r
d

dr
*r

dVm

dr
+ − m2Vm = 0. !22"

In the absence of either a conducting or a resistive wall sur-
rounding the plasma, the general solution to the above equa-
tion is

Vm!r" = amr−&m& + bmr&m& !23"

for m$0, and

V0!r" = a0 ln r + b0, !24"

where the am and bm are constants. It follows that

Vm!1+" = − &m&−1r.dVm

dr
.

1+

+ 2bm !25"

for m$0,

V0!1+" = b0 !26"

and

112502-3 A nonideal error-field response model… Phys. Plasmas 17, 112502 !2010"

Downloaded 11 Jul 2012 to 128.83.61.166. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



r.dV0

dr
.

1+

= a0. !27"

The externally generated component of the perturbed
field is written as

'Be = i! # Ve, !28"

where

Ve!r,%,&" = -
m

bmr&m&ei!m%−n&". !29"

Let

.!%,&" = . er · 'Be

&#%&&#&& .r=1
!30"

be the normal flux per unit solid angle !normalized to B0a2"
of the externally generated nonaxisymmetric field at the
plasma boundary. It follows that

.!%,&" = i -
m$0

.mei!m%−n&", !31"

where

.m = &m&bm. !32"

Let

/!%,&" = . er · 'B
&#%&&#&& .r=1+

!33"

be the normal flux per unit solid angle !normalized to B0a2"
of the total nonaxisymmetric field !i.e., the sum of the exter-
nally generated and plasma generated fields" just outside the
plasma boundary. It follows that

/!%,&" = i -
m$0

/mei!m%−n&", !34"

where

/m = &m&!bm − am" = r.dVm

dr
.

1+

. !35"

C. Ideal plasma response

In the internal region, 0"r"1, let

x!r,%" = !1 − Ep"−1#r cos % − E!r"cos % + T!r"cos 2%$ ,

!36"

y!r,%" = !1 − Ep"−1#r sin % + E!r"sin % − T!r"sin 2%$ ,

!37"

where

E!r" = /0 00 r0 r0

#!r − r0"/!r1 − r0"$!Ep/r1" r0 " r" r1

Ep/r r1 0 r0 1,
0 !38"

T!r" = /0 00 r0 r0

r#!r − r0"/!r1 − r0"$!Tp/r1
3" r0 " r" r1

Tp/r2 r1 0 r0 1,
0 !39"

and 0"r0"r1"1. It follows, from Eqs. !3", !4", !14", and
!15" that x!1,%"=xp!%" and y!1,%"=yp!%". Note that the in-
ternal r, %, & coordinate system coincides with external sys-
tem !18" and !19" in the region r10r01. In the limit
r0→0 and r1→1, the r, %, & coordinate system is nonsingu-
lar throughout the internal region as long as '"1 /2.

Now, it is easily demonstrated that

!#r1 #% · #z"−1 = !1 − Ep"−2r ! , !40"

&#r&2 =
arr

!2 , !41"

#r · #% =
ar%

r!2 , !42"

&#%&2 =
a%%
r2!2 , !43"

where

! = 1 −
EE!

r
−

2TT!

r
+ *ET!

r
+

2E!T

r
+cos %

+ *E

r
− E!+cos 2% − *2T

r
− T!+cos 3% , !44"

arr = 1 +
E2

r2 +
4T2

r2 −
4ET

r2 cos % +
2E

r
cos 2% −

4T

r
cos 3% ,

!45"

ar% = *2E!T

r
−

ET!
r
+sin % − *E

r
+ E!+sin 2%

+ *2T

r
+ T!+sin 3% , !46"

a%% = 1 + E!2 + T!2 − 2E!T! cos % − 2E! cos 2%

+ 2T! cos 3% . !47"

Here, !%d /dr.
In the limit n!#1, Laplace’s equation !17" yields

r
dVm

dr
= -

m!

!Qmm!2m! − Rmm!Vm!" , !48"

r
d2m

dr
= -

m!

!Rm!m2m! − Smm!Vm!" , !49"

where
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2m!r" = -
m!
*Lmm!r

dVm!

dr
+ Mmm!Vm!+ !50"

and

Qmm!!r" = !L−1"mm!, !51"

Rmm!!r" = -
k

!L−1"mkMkm!, !52"

Smm!!r" = -
k

MkmRkm! + Pmm!, !53"

with

Lmm!!r" =
1
$
(

0

$ arr

!
cos#!m − m!"%$d% , !54"

Mmm!!r" =
m!
$
(

0

$ ar%

!
sin#!m − m!"%$d% , !55"

Pmm!!r" = −
mm!
$
(

0

$ a%%
!

cos#!m − m!"%$d% . !56"

Note that Qm!m=Qmm! and Sm!m=Smm!. Furthermore, Eqs.
!48" and !49" can be combined to give

r
d

dr*-m Vm2m+ = -
m,m!

!Qmm!2m2m! − Smm!VmVm!" . !57"

Observe that E!r" and T!r" are continuous in the internal
region, whereas E!!r" and T!!r" are discontinuous at r=r0
and r=r1. It follows that the Qmm!, Rmm!, and Smm! functions
are also discontinuous at r=r0 and r=r1. Despite this, as is
clear from Eqs. !48" and !49", the Vm!r" and 2m!r" functions
are continuous throughout the internal region.

The ideal !i.e., linearized marginally stable ideal-MHD"
response of the plasma to the external perturbation is deter-
mined by launching a series of well-behaved !at r=0" solu-
tions of Eqs. !48" and !49" from r=r0, and then integrating
them to r=r1. !Incidentally, launching the solutions from
r=r0, where r0*0, rather than from r=0, alleviates numeri-
cal problems associated with the rapid growth of r&m&

solutions, at small-r, when &m&31." In the region 00r0r0,
it is easily demonstrated that Qmm!='mm!, Rmm!=0, and
Smm!=−m2'mm!. Equations !48" and !49" consequently re-
duce to Eq. !22". Hence, at r=r0, the mth well-behaved
solution is written as

Vm!!r0" = r0
&m&'mm!, !58"

2m!!r0" = &m&r0
&m&'mm!. !59"

Let

Amm! = Vm!!r1" , !60"

Bmm! = 2m!!r1" . !61"

Now, it is easily demonstrated that the m=0 solution takes
the particularly simple form

Vm!!r" = '0m!, !62"

2m!!r" = 0, !63"

throughout the internal region. It follows that

A0m! = '0m!, !64"

B0m! = 0. !65"

It is also readily shown that 20!r"=0 in region 0"r"1 for
all solutions, which implies that

Bm0 = 0. !66"

Finally, the Cmm! values are determined from

Amm! = -
k

BmkCkm! + '0m'0m!. !67"

Note that the Cm0 are arbitrary, since the Bm0 are all zero.
In the region r10r01, it is easily demonstrated that

Qmm!='mm!, Rmm!=0, Smm!=−m2'mm!, and consequently that
2m=rdVm /dr. It is convenient to take the limit r1→1−, in
which case

Vm!1−" = Vm!r1" , !68"

r.dVm

dr
.

1−

= 2m!r1" . !69"

It follows, from the above analysis, that the ideal re-
sponse of the plasma to the external perturbation is specified
by

Vm!1−" = -
m!

Cmm!r. dVm!

dr
.

1−
!70"

for m$0 and

V0!1−" = -
m!

C0m!r. dVm!

dr
.

1−
+ c0, !71"

where c0 is a constant. Furthermore, the fact that the Bm0 are
all zero implies that

20!1−" = r.dV0

dr
.

1−

= 0. !72"

Now, integrating Eq. !57" from r=0 to r=1−, making use
of the boundary conditions at r=0, as well as Eqs. !70" and
!72", we obtain

-
m,m!$0

Cmm!2m!1−"2m!!1−"

= -
mm!

(
0

1

!Qmm!2m2m! − Smm!VmVm! "dr . !73"

Swapping the indices m and m! taking the difference be-
tween the resulting two equations, and recalling that
Qm!m=Qmm! and Sm!m=Smm!, we deduce that
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-
m,m!$0

!Cmm! − Cm!m"2m!1−"2m!!1−" = 0. !74"

Since the above equation is true for arbitrary 2m!1−", it fol-
lows that Cm!m=Cmm! for all m ,m!$0. Moreover, given that
the Cm0 are arbitrary, we can set Cm0=C0m for m$0 and
C00=0. Hence, we conclude that

Cm!m = Cmm! !75"

for all m and m!. The above symmetry relation is ultimately
a consequence of the well-known self-adjointness of the
ideal-MHD force operator.9 It also ensures that the plasma
cannot exert a toroidal torque on itself.12

D. Nonideal plasma response

We can simulate the resonant nonideal response of the
plasma, which is associated with dissipation at internal reso-
nant surfaces, by modeling each such surface as a toroidally
rotating, thin resistive shell that only responds to the appro-
priate resonant harmonic of the perturbed magnetic field.

Let 'j!% ,&" be the current density !normalized to
!Bo /a+0" in a particular resistive shell lying on the axisym-
metric toroidal surface r=rs. Integrating

#1 'B = 'j !76"

!in r" across the shell, we obtain

J!%,&" = ier 1 #J , !77"

where

J!%,&" = (
rs−

rs+

'j
dr

&#r&
!78"

is the radially integrated current density in the shell !normal-
ized to !Bo /+0", and

J!%,&" = #V$r=rs−

r=rs+ !79"

is a current stream-function !normalized to !Bo /+0". Note
that rs4=rs4's /2, where 's#1 is the constant shell thick-
ness !in r". Now, integration of

# · 'B = 0 !80"

!in r" across the shell yields

)r
%V

%r
,

r=rs−

r=rs+

= 0. !81"

Finally, the radial component of the curl of Ohm’s law within
the shell gives

in5s!'Br = er · #1 !6s
−1'j" , !82"

where 5s!=5s−7 /n, 5s is the shell toroidal angular velocity,
7 the real frequency of both the applied perturbation and the
plasma response !this frequency assumed to be much less
than the Alfvén frequency, so that the perturbed plasma is
effectively in a nonaxisymmetric equilibrium state", and
6s!%" the shell electrical conductivity. It follows that

in5s!r. %V

%r
.

r=rs

=
%

%%
*8s

−1%J
%%

+ , !83"

where

8s!%" = rs'shs
26s !84"

is the shell time-constant, and

hs!%" % h!rs,%" . !85"

Consider the simulated m, n resonant surface. By anal-
ogy with Eqs. !11" and !12", the poloidal magnetic field at
this surface is modeled as

Bm!%" = !2,#-m + xp!%"$"1/2, !86"

where the constant -m is adjusted so as to ensure that

1
$
(

0

$ hm

Bm
d% = qm. !87"

Here,

hm!%" % h!rm,%" , !88"

where rm is the shell radius and

qm =
m

n
. !89"

Let us define the “straight” poloidal angle,

9m!%" = (
0

%

:m!%!"d%!, !90"

where

:m!%" =
hm

qmBm
. !91"

Thus, in the 9m−& plane, the equilibrium magnetic field-
lines at the resonant surface take the form of straight-lines of
constant gradient d9m /d&=1 /qm. Let

#V$r=rm−

r=rm+ = J!%,&" = -
m!

Jm!e
i#m!9m!%"−n&$, !92"

where the Jm are constants. Furthermore, by analogy with
Eq. !83", let us write

in5m! r. %V

%r
.

r=rm

=
%

%%*-
m!

8m!
−1 %

%%
Jm!e

i#m!9m!%"−n&$+
=

%

%%*-
m!

im!:mJm!

8m!
ei#m!9m!%"−n&$+ ,

!93"

where 5m! =5m−7 /n and 5m is the plasma toroidal angular
velocity at the surface. In addition, and for the sake of sim-
plicity, let

8m!%" = :m8̂m, !94"
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8m!$m!%" = :m;8̂m, !95"

where 8̂m and ;#1 are positive constants. Here, 8̂m is the
mean time-constant of the surface when responding to the
resonant harmonic of the external perturbation and ;8̂m the
much smaller mean time-constant when responding to non-
resonant harmonics. This choice of time-constants ensures
that the m, n resonant surface effectively only responds to the
resonant harmonic of the perturbed magnetic field #i.e., the
component of V!rm ,% ,&" which varies as exp!i#m9m!%"
−n&$"$ and, furthermore, that the radially localized helical
current excited at the surface flows predominately parallel to
the local equilibrium magnetic field #i.e., the current stream-
function varies as exp!i#m9m!%"−n&$"$.

It follows from Eqs. !90"–!95" that

#Vm!$rm−

rm+ = JmUm!m, !96"

in5m! 8̂m-
m!

Um!mr. dVm!

dr
.

rm−

= − m2Jm, !97"

where

Um!m =
1
$
(

0

$

cos#m9m!%" − m!%$d% . !98"

Furthermore, Jm$m!#Jm. Hence, from Eqs. !81", !96", and
!97", the matching conditions at the simulated m, n resonant
surface are

)r
dVm!

dr
,

rm−

rm+

= 0, !99"

#Vm!$rm−

rm+ = −i
5m! 8̂m

n -
m"

Um!mUm"m

qm
2 r. dVm"

dr
.

rm

. !100"

Now, the poloidal mode numbers of the various resonant
surfaces lying within the plasma run from m0 to m1, where

m0 − 1
n

" q0 "
m0

n
"

m1

n
" qp "

m1 + 1
n

. !101"

Here, q0 is the simulated central safety-factor of the plasma.
For the sake of simplicity, let rm→1+, hm→hp, 8̂m→8p, and
5m→5p for all m00m0m1: i.e., let all of the rational sur-
faces lie just outside the plasma boundary, have the same
mean time-constant 8p and rotate at the same toroidal angular
velocity 5p. In the following, 8p is interpreted as the mean
time-scale for plasma dissipation and 5p as the mean plasma
toroidal angular velocity.

It follows, from the above, that the nonideal resonant
response of the plasma can be incorporated into our analysis
by replacing Eqs. !25"–!27" with

Vm!1+" = − &m&−1r. dVm

dr
.

1+

+ i
5p!8p

n

1 -
m00k0m1,m!

UmkUm!k

qk
2 r. dVm!

dr
.

1+

+ 2&m&−1.m

!102"

for m$0,

V0!1+" = i
5p!8p

n -
m00k0m1,m!

U0kUm!k

qk
2 r. dVm!

dr
.

1+

+ b0,

!103"

and

r.dV0

dr
.

1+

= a0, !104"

respectively. Here, 5p!=5p−7 /n.

E. Matching at plasma boundary

The appropriate linearized matching conditions at r=1
are18,19

er · 'B!r = 1−" = #B · #< − <er · !er · #"B$r=1−
, !105"

er · 'B!r = 1+" = #B · #< − <er · !er · #"B$r=1+
, !106"

#B · 'B + <er · #!B2/2"$r=1−
= #B · 'B + <er · #!B2/2"$r=1+

,

!107"

where <!% ,&" is the normal plasma displacement at the
boundary.

Let

<!%,&" = -
m
<mei!m%−n&", !108"

where the <m are constants. The first matching condition
yields

r.dVm

dr
.

1−
= -

m!

Emm!<m!, !109"

where

Emm! =
1
$
(

0

$

!− nhp"cos#!m − m!"%$d% . !110"

The second matching condition gives

r.dVm

dr
.

1+

= -
m!

Gmm!<m!, !111"

where

Gmm! =
1
$
(

0

$

!mBp − nhp"cos#!m − m!"%$d% . !112"

Finally, the third matching condition reduces to
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-
m!

#Em!mVm!!1−" − Gm!mVm!!1+"$ = -
m!

Hmm!<m!, !113"

where

Hmm! =
1
$
(

0

$ *Bp
2hp!

hp
2 + ,xp!+cos#!m − m!"%$d% , !114"

hp!!%" %
1
2
. %!#rh$2"

%r
.

r=1

= !1 − Ep"−2!1 − Ep
2 − 8Tp

2 + 6EpTp cos %

+ 2Tp cos 3%" , !115"

xp!!%" % r. %x

%r
.

r=1

= !1 − Ep"−1#!1 + Ep"cos % − 2Tp cos 2%$ . !116"

F. Plasma response equation

Now, Eqs. !72" and !110" yield

-
m!

E0m!<m! = 0. !117"

But, as is clear from an examination of Eqs. !104" and !110"–
!112", this implies that

-
m!

G0m!<m! = r.dV0

dr
.

1+

= a0 = 0. !118"

Moreover, Eqs. !70", !71", and !109" give

Vm!1−" = -
k,m!

CmkEkm!<m! !119"

for m$0 and

V0!1−" = -
k,m!

C0kEkm!<m! + c0. !120"

Finally, Eqs. !102", !103", and !111" reduce to

Vm!1+" = − -
m!

&m&−1Gmm!<m! + i
5p!8p

n

1 -
m00k0m1,l,m!

UmkUlk

qk
2 Glm!<m! + 2&m&−1.m

!121"

for m$0 and

V0!1+" = i
5p!8p

n -
m00k0m1,l,m!

U0kUlk

qk
2 Glm!<m! + b0. !122"

Equation !113" can be combined with Eqs. !119"–!122"
to give the plasma response equation,

-
m!

Fmm!<m! − i
5p!8p

n -
k,m!

WmkWm!k<m!

= -
k$0

2&k&−1Gkm.k + E0m.0, !123"

where

Fmm! = -
k,l

EkmCklElm! + -
k$0

Gkm&k&−1Gkm! − Hmm!, !124"

Wmm! =1-
k

Ukm!Gkm/qm! m0 0 m!0 m1

0 otherwise,
2 !125"

.0 = b0 − c0. !126"

G. Toroidal locking torque

As is well-known, an external magnetic perturbation ex-
erts a radially localized toroidal electromagnetic torque at
each of the resonant surfaces lying within the plasma.12 The
torque exerted on the m, n surface !normalized to
a2R0B0

2 /+0" is

Tm = 2$2n Im*-
m!

r. dVm!
!

dr
.

rm

#Vm!$rm−

rm++ . !127"

Thus, we deduce from Eq. !100" that

Tm = −2 $25m! 8̂m* -
m!,m"

r
dVm!

!

dr

Um!mUm"m

qm
2 r

dVm"

dr +
rm

.

!128"

Summing over all resonant surfaces, and taking the limit
rm→1+, 5m→5p, 8̂m→8p, we obtain the following expres-
sion for the total toroidal locking torque exerted on the
plasma:

T& = −2 $25p!8p* -
m,m00k0m1,m!

r
dVm

!

dr

UmkUm!k

qk
2 r

dVm!

dr +
1+

.

!129"

Finally, making use of Eqs. !111" and !125", the above ex-
pression reduces to

T& = −2 $25p!8p -
m,m!

<m
! WmkWm!k<m!. !130"

IV. INTRINSIC PLASMA STABILITY

The intrinsic stability of the plasma to an ideal external-
kink mode of toroidal mode number n is determined by solv-
ing plasma response equation !123" with 5p!, b0, and all of
the .m, set to zero !except .0=−c0". This is equivalent to
searching for a marginally stable ideal-MHD mode of toroi-
dal mode number n, which corotates with the plasma !i.e.,
7=n5p", in the absence of an externally generated magnetic
perturbation. The plasma response equation simplifies to
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FJ<! = -ee! , !131"

where FJ is the matrix of the Fmm! values, <! the column
vector of the <m values, e! the column vector of the

em =
E0m

!-m!E0m!E0m!"1/2 !132"

values, and -e=.0 / !-m!E0m!E0m!"
1/2. Equation !131" must

be solved subject to constraint !117", which implies that the
poloidal cross-sectional area of the plasma is invariant, and
which can be written as

e!†<! = 0, !133"

where e!† is the row vector of the em
! values !i.e., † denotes a

Hermitian conjugate". Note that e!†e! =1.
Now, we can automatically satisfy the above constraint

by writing18,19

<! = PJ<!!, !134"

where

PJ = IJ− e!e!†. !135"

Here, IJ is the identity matrix. Note that e!†PJ = PJe! =0! . Left-
multiplying Eq. !131" by PJ, we obtain

FJ!<!! = 0, !136"

where

FJ! = PJFJPJ . !137"

Let the <! j and = j be the eigenvectors and eigenvalues of
the F!-matrix: i.e.,

FJ!<! j = = j<! j . !138"

Now, since Fm!m=Fmm!, which follows from Eqs. !75",
!114", and !124", it is clear that the F!-matrix is Hermitian.
Hence, the = j are real, and we can write

<!i
†<! j = 'ij . !139"

As is easily demonstrated, the F!-matrix possesses the trivial
eigenvector <!0=e!, corresponding to the eigenvalue =0=0.
However, from !134", this eigenvector generates a null
plasma displacement and does not therefore correspond to a
physical solution. Let =1 be the most negative eigenvalue of
the F!-matrix, excluding =0. According to the well-known
ideal-MHD energy principle,9 the plasma is intrinsically
stable to an external-kink mode of toroidal mode number n
!in the absence of a wall surrounding the plasma" when
=1*0 and is intrinsically unstable when =1"0. !This fol-
lows because 'W= !1 /2"<!†FJ<!, where 'W is the ideal-MHD
perturbed energy. Thus, if <!!=<! j then 'W== j /2." Hence, we
deduce that the no-wall stability limit corresponds to =1=0.

V. LOCKING TORQUE

The response of the plasma to a static !i.e., 7=0", non-
axisymmetric, externally generated, magnetic perturbation of
toroidal mode number n—otherwise known as an error-
field—is determined from plasma response equation !123",
which can be written as

<!†FJ =.! †MJ + -e
!e!†, !140"

where FJ is the matrix of the

Fmm! = Fmm! + i
5p8p

n -
k

WmkWm!k !141"

values, .! the column vector of the .m values, and MJ the
matrix of the

Mmm! = 12&m&−1Gmm! m $ 0

0 m = 0
2 !142"

values. The plasma response equation must again be solved
subject to constraint !117", which can be written as

−3

−2

−1

0

1

2

3

y

−2 −1 0 1 2
x

FIG. 1. !Color online" Poloidal cross-section of the equilibrium used in the
example calculations. The equilibrium parameters are (=2.0, '=0.25, and
r0=0.3. The concentric !blue" curves show equally spaced !in r" constant r
surfaces. The radial !red" curves show equally spaced !in %" constant %
surfaces. The heavy !black" curve shows the plasma boundary.
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<!†e! = 0. !143"

Finally, from Eq. !130", the total toroidal electromagnetic
torque exerted on the plasma by the error-field is

T& = −2 $25p8p&<!†WJ &2, !144"

where WJ is the matrix of the Wmm! values.
Equations !140" and !143" can be combined to give

<!† =.! †MJ LJ, !145"

where

LJ = FJ−1 − FJ−1e!e!†FJ−1/!e!†FJ−1e!" . !146"

Hence, Eq. !144" yields

T& = −2 $25p8p&.! †XJ&2, !147"

where

XJ = MJ LJWJ . !148"

Now, XJ, which is referred to as the plasma response
matrix, is a rectangular matrix of dimension I1J, where I is
the number of poloidal harmonics retained in the calculation
and J the number of resonant surfaces lying within the
plasma. It follows that I)J. According to a well-known
theorem in linear algebra,26 a matrix such as XJ can always be
decomposed as follows:

XJ = YJ>JZJ, !149"

where YJ is an I1 I matrix, >J an I1J diagonal matrix, and ZJ
a J1J matrix. Moreover,

YJ = y!1y!2 ¯ y!I, !150"

where the y! i are a complete set of orthonormal row vectors
of length I: i.e.,

y! i
†y! j = 'ij !151"

for i , j=0, I. Likewise,

ZJ = z!1z!2 ¯ z!J, !152"

where the z!i are a complete set of orthonormal row vectors of
length J: i.e.,

z!i
†z! j = 'ij !153"

for i , j=0,J. Finally, the diagonal elements of >J , the >i
!say", are all real and non-negative and are arranged, such
that >1*>2¯*>J. The type of decomposition described
above is known as singular value decomposition and the >i
are called the singular values. For i=0,J, each y! i and z!i
vector is associated with a corresponding nonzero singular
value, >i. On the other hand, for i=J+1, I, each y! i vector is
associated with the singular value of 0.

0

10

20

Λ1

0.44 0.45 0.46
β

FIG. 2. !Color online" Singular value, >1, associated with the j=1 error-
field, evaluated as a function of ,. The first !red", second !green", third
!blue", fourth !brown", and fifth !magenta" curves, in order from the top,
correspond to 5p8p=2.5, 5., 10., 20., and 40., respectively. The other calcu-
lation parameters are (=2.0, '=0.25, q0=1.1, qp=3.5, n=1, I=65, and r0
=0.3. The vertical dashed line indicates the no-wall stability limit.
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0.01

0.02

0.03

Λ2

0.44 0.45 0.46
β

FIG. 3. !Color online" Singular value, >2, associated with the j=2 error-
field, evaluated as a function of ,. The various curves !which effectively
plot on top of one another" correspond to 5p8p=2.5, 5., 10., 20., and 40. The
other calculation parameters are (=2.0, '=0.25, q0=1.1, qp=3.5, n=1, I
=65, and r0=0.3. The vertical dashed line indicates the no-wall stability
limit.
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Let

.!

&.! &
= -

i=1,I
piy! i. !154"

It follows from Eq. !151" that

-
i=1,I

&pi&2 = 1. !155"

Furthermore, it is easily seen that

.! †XJ = -
i=1,J

pi
!>iz!i. !156"

Thus, Eqs. !144" and !153" yield

T& = −2 $25p8p&.! &2 -
i=1,J

&pi&2>i
2. !157"

The J characteristic error-fields that are capable of exert-
ing a torque on the plasma are such that

.! j

&.! j&
= y! j !158"

for j=1,J. The corresponding torques are15

Tj = −2 $25p8p> j
2&.! j&2. !159"

On the other hand, the I−J independent error-fields that exert
zero torque on the plasma are such that

.! j

&.! j&
= y! j !160"

for j=J+1, I. Now, according to Eqs. !30" and !31", the po-
loidal variation of the normal component of the jth indepen-
dent error-field !in vacuum" at a given toroidal location on
the plasma boundary is a linear combination of Cj!%" and
Sj!%", where

Cj!%" =
1

hp!%" -
m$0

#Re!y! j"mcos!m%" − Im!y! j"msin!m%"$ ,

!161"
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FIG. 4. !Color online" Independent components of the j=1 normal error–field, C1!%" !up-down symmetric, blue" and S1!%" !up-down antisymmetric, green",
plotted relative to the plasma boundary !heavy, black", for ,=0.35 !top left", 0.40 !top right", 0.45 !bottom left", and 0.50 !bottom right". The other calculation
parameters are (=2.0, '=0.25, q0=1.1, qp=3.5, 5p8p=10−3, n=1, I=65, and r0=0.3.
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Sj!%" =
1

hp!%" -
m$0

#Re!y! j"msin!m%" + Im!y! j"mcos!m%"$ .

!162"

Finally, a comparison of Eqs. !155" and !157" reveals that the
j=1 error-field maximizes the total toroidal electromagnetic
torque exerted on the plasma, at fixed &.! &.15 Of course, if the
j=1 error-field is excluded then the j=2 error-field maxi-
mizes the torque, and so on.

VI. BOOZER PARAMETERS

Equations !35", !111", !130", and !140"–!143" yield27

2'W + i
8&
n

= /!†NJ.! , !163"

where 'W= !1 /2"<!†FJ<! is the ideal-MHD perturbed energy,
8&=T& /2$2, /! is the column vector of the /m values, and NJ
the matrix of the

Nmm! = 12&m&−1'mm! m $ 0

0 m = 0
2 !164"

values. Now, it is conventional to write28

−
/!†NJ.!
/!†NJ/!

= sB + i-B, !165"

where the so-called Boozer parameters sB and -B are both
real. These particular dimensionless parameters are signifi-
cant because they can be measured experimentally.29

Moreover, the Boozer parameters associated with the jth
characteristic error-field, obtained via singular value decom-
position of the plasma response matrix !see Sec. V", are

sj + i- j % − * x! j
†NJy! j

x! j
†NJx! j

+ = − * <! j
†FJ<! j

x! j
†NJx! j

+ + i
5p8p

n * > j
2

x! j
†NJx! j

+ ,

!166"

where x! j =GJ<! j and <! j =LJ†MJ †y! j.

VII. EXAMPLE CALCULATIONS

Consider the response of a strongly shaped tokamak
plasma of vertical elongation (=2.0, triangularity '=0.25,
and central safety-factor q0=1.1, to an n=1 error-field. The
plasma boundary and the associated r−% coordinate surfaces
!for r0=0.3" are shown in Fig. 1. All of the calculations
discussed below employ 65 poloidal harmonics, ranging
from m=−32 to +32, and are such that internal solutions are
launched from r0=0.3.

Figures 2 and 3 show the two nonzero singular values of
the error-field response matrix, >1 and >2, calculated as
functions of ,, for qp=3.5, and various different values of
the normalized plasma rotation, 5p8p. Also shown is the n
=1 no-wall beta-limit, which lies at ,nw=0.4487. !So, in the
absence of a wall, the plasma is stable to the n=1 external-
kink mode when ,",nw and unstable when ,*,nw." Inci-
dentally, there are only two nonzero singular values because
there are only two resonant surfaces lying within the plasma
!namely, the q=2 and q=3 surfaces".

0
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20

Λ1

−0.01 −0.005 0 0.005 0.01
s1

FIG. 5. !Color online" Singular value, >1, associated with the j=1 error-
field, evaluated as a function of the related Boozer parameter, s1. The first
!red", second !green", third !blue", fourth !brown", and fifth !magenta"
curves, in order from the top, correspond to 5p8p=2.5, 5., 10., 20., and 40.,
respectively. The other calculation parameters are (=2.0, '=0.25, q0=1.1,
qp=3.5, n=1, I=65, and r0=0.3.
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FIG. 6. !Color online" Boozer parameter, s1, associated with the j=1 error-
field, evaluated as a function of the plasma stability parameter, =1. The first
!red", second !green", third !blue", fourth !brown", and fifth !magenta"
curves, in order from the top, correspond to 5p8p=2.5, 5., 10. 20., and 40.,
respectively. The other calculation parameters are (=2.0, '=0.25, q0=1.1,
qp=3.5, n=1, I=65, and r0=0.3.

112502-12 R. Fitzpatrick Phys. Plasmas 17, 112502 !2010"

Downloaded 11 Jul 2012 to 128.83.61.166. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



A comparison of Figs. 2 and 3 reveals that >13>2.
Since, at fixed plasma rotation and error-field amplitude, the
locking torque associated with the jth independent error-field
is proportional to > j

2 #see Eq. !159"$, we conclude that the

torque exerted by the j=2 error-field is completely negligible
compared to that exerted by the j=1 error-field. Moreover,
these are the only two independent error-fields that are ca-
pable of exerting a torque on the plasma. It follows that, for
the particular equilibrium under investigation, we can effec-
tively eliminate the locking torque associated with a general
error-field by simply canceling out the field’s j=1 compo-
nent using correction coils.13–15

Figure 4 illustrates the poloidal variation of the normal
component of the j=1 error-field at the plasma boundary.
This is calculated for various different values of ,, at low
plasma rotation !i.e., 5p8p#1". Now, at a given toroidal lo-
cation on the boundary, the variation in question is a linear
combination of two functions, C1!%" and S1!%", which are
plotted in the figure !relative to the boundary". As can be
seen, in the absence of strong plasma rotation !or strong
dissipation", the first of these functions is up-down symmet-
ric, and the second up-down antisymmetric. Observe that the
C1!%" and S1!%" functions attain their peak amplitudes at the
top and bottom of the plasma, where the boundary’s radius of
curvature becomes especially small, indicating a particularly
sensitivity to external magnetic perturbations at these loca-
tions. Moreover, the functions have negligible amplitude on
the inboard side of the plasma, indicating a total insensitive
to inboard external magnetic perturbations.13–15

As is apparent from Fig. 2, the dominant singular value
of the error–field response matrix, >1, exhibits a resonant
peak !as , varies" close to the no-wall beta-limit, ,=,nw.
This implies that the locking torque associated with a general
error-field also peaks strongly when ,3,nw. As is well-
known, this peaking is due to a resonant amplification of the
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FIG. 7. !Color online" Normalized locking torque, T̂1, due to the j=1 error-
field, evaluated as a function of 5p8p. The second !red", third !green", first
!blue", fourth !brown", and fifth !magenta" curves, in order from the left,
correspond to ,=0.35, 0.40, 0.45, 0.50, and 0.55, respectively. The other
calculation parameters are (=2.0, '=0.25, q0=1.1, qp=3.5, n=1, I=65, and
r0=0.3.
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FIG. 8. !Color online" Boozer parameter -1, associated with the j=1 error-
field, evaluated as a function of 5p8p. The second !red", third !green", fifth
!blue", fourth !brown", and first !magenta" curves, in order, from the top,
correspond to ,=0.35, 0.40, 0.45, 0.50, and 0.55, respectively. The other
calculation parameters are (=2.0, '=0.25, q0=1.1, qp=3.5, n=1, I=65, and
r0=0.3.
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FIG. 9. !Color online" Normalized Boozer locking torque, 8̂1, due to the
j=1 error-field, evaluated as a function of 5p8p. The third !red", second
!green", first !blue", fourth !brown", and fifth !magenta" curves, in order,
from the left, correspond to ,=0.35, 0.40, 0.45, 0.50, and 0.55, respectively.
The other calculation parameters are (=2.0, '=0.25, q0=1.1, qp=3.5,
n=1, I=65, and r0=0.3.
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j=1 error-field by the plasma.28 Observe that the peak
value of >1 is approximately inversely proportional to the
normalized plasma rotation 5p8p.28 Moreover, as the level of
rotation increases, the resonance peak shifts to the high-,
side of the no-wall beta-limit. Such behavior indicates that,
in the presence of substantial plasma rotation !or, alterna-
tively, substantial plasma dissipation", the error-field torque
peaks at a beta value that lie above the no-wall stability limit
!i.e., ,*,c". This prediction is consistent with experimental
observations.17,29,30 Note, finally, from Fig. 3, that the second
largest singular value of the error-field response matrix, >2,
does not exhibit any resonant behavior in the vicinity of the
no-wall beta-limit.

Figure 5 shows the dominant singular value of the error-
field response matrix, >1, evaluated as a function of the as-
sociated Boozer parameter s1 for a range of beta values
around the no-wall beta-limit and for various different values
of the plasma rotation. It can be seen that, irrespective of the
level of rotation, the peak value of >1 corresponds to s1=0.
It follows that the peak locking torque !at constant error-field
amplitude and plasma rotation" also always occurs when
s1=0.28

Figure 6 illustrates the relationship between the Boozer
parameter s1 associated with the j=1 error-field and the
plasma stability parameter =1. Recall, from Sec. IV, that the
plasma is stable to the no-wall n=1 external-kink mode
when =1*0 and unstable when =1"0. It can be seen that the
no-wall beta-limit, =1=0, corresponds to s1=0 at low plasma
rotation levels. However, at higher rotation levels, the
Boozer parameter s1 passes through zero when =1"0: i.e., at
beta values above the no-wall beta-limit. Thus, in general,
s1=0, which corresponds to the peak locking torque, does
not correspond to the no-wall beta-limit,31 as erroneously
stated in Ref. 28.

Figure 7 shows the locking torque,

T1 ? 5p8p>1
2, !167"

associated with the dominant j=1 error-field, calculated as a
function of the normalized plasma rotation, 5p8p, and nor-
malized such that its peak value is unity. The torque is evalu-
ated for various different values of ,. It can be seen that the
torque initially increases linearly with increasing plasma ro-
tation, but eventually attains a maximum value, and thereaf-
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FIG. 10. !Color online" Independent components of the j=1 normal error–field, C1!%" !first from the top, blue" and S1!%" !first from the bottom, green", plotted
relative to the plasma boundary !heavy, black", for 5p8p=10−3 !top left", 5. !top right", 10. !bottom left", and 20. !bottom right". The other calculation
parameters are (=2.0, '=0.25, ,=0.45, q0=1.1, qp=3.5, n=1, I=65, and r0=0.3.
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ter decreases with increasing rotation. This variation of the
torque is caused by decreasing plasma amplification of the
j=1 error-field with increasing plasma rotation.

Figure 8 illustrates the relationship between the Boozer
parameter -1 associated with the dominant j=1 error-field,
and the normalized plasma rotation, 5p8p. At low rotation
levels, it can be seen that -1?5p8p. However, at higher ro-
tation levels, -1 attains a peak value and, thereafter, de-
creases with increasing plasma rotation.

Figure 9 shows the Boozer single-mode prediction for
the locking torque associated with the dominant j=1
error-field,28

81 ?
-1

s1
2 + -1

2 , !168"

calculated as a function of the normalized plasma rotation,
5p8p, and normalized such that its peak value is unity. The
torque is evaluated for various different values of ,. It can be
seen, by comparison with Fig. 7, that the Boozer prediction
actually does a reasonably good job of accounting for the
variation of the locking torque with plasma rotation at low to
moderate levels of rotation.

Figure 10 shows the poloidal variation of the normal
component of the j=1 error-field at the plasma boundary,
calculated for various different values of the normalized
plasma rotation, 5p8p#1, at a beta value close to the no-
wall beta-limit. It can be seen that, in the presence of strong
plasma rotation or strong dissipation !i.e., 5p8p31", the
C1!%" and S1!%" functions deviate significantly from pure up-
down symmetric and pure up-down antisymmetric functions,
respectively.

Finally, Fig. 11 shows the nonzero singular values of the

plasma response matrix, > j, calculated as a function of qp for
fixed q0, ,, and 5p8p. Also shown is the no-wall stability
limit, which corresponds to qpnw=3.544. !So, in the absence
of a wall, the plasma is stable to an n=1 external-kink mode
when qp*qpnw and unstable when qp"qpnw." Note that
the largest singular value >1 has a resonant peak when
qp3qpnw. Now, as qp increases at constant q0, a new nonzero
singular value appears each time a resonant surface enters
the plasma from the boundary. Observe that these new values
become progressively smaller. Moreover, each singular value
asymptotes to a finite constant as qp→@. This suggests that,
in the limit qp→@, in which there are an infinite number of
resonant surfaces within the plasma, and a magnetic X-point
appears on the boundary, the locking torque exerted by a
general error-field remains finite. Finally, it can be seen that
some of the singular values !e.g., >5 and >6" are nonzero
when they first appear. This implies that the locking torque
due to a general error-field can increase discontinuously
when a resonant surface enters the plasma from the
boundary.32

VIII. SUMMARY

A model has been developed in order to predict the
error-field response of a toroidally rotating tokamak plasma
possessing a strongly shaped poloidal cross-section. The re-
sponse is made up of nondissipative ideal and dissipative
nonideal components. The calculation of the ideal response
is greatly simplified by employing a large aspect-ratio, con-
stant pressure, plasma equilibrium in which the current is
entirely concentrated at the boundary. Moreover, the calcula-
tion of the resonant component of the nonideal response is
simplified by modeling each resonant surface within the
plasma as a toroidally rotating, thin resistive shell that only
responds to the resonant component of the perturbed mag-
netic field. This approach mimics dissipation due to con-
tinuum damping at Alfvén and/or sound wave resonances
located close to each surface. The nonresonant component of
the nonideal response is neglected. The error-fields that
maximize the net toroidal electromagnetic torque exerted on
the plasma are determined via singular value decomposition
of the total response matrix.

For a strongly dissipative plasma, the toroidal locking
torque associated with a general error-field is found to peak
at a beta value that lies above the no-wall beta-limit, in ac-
cordance with experimental observations. In addition, the
torque exhibits a nonmonotonic variation with increasing
plasma rotation. The torque also asymptotes to a finite value
as qp→@, indicating that it remains finite when there is a
magnetic X-point on the boundary. Finally, the torque is able
to increase discontinuously when a resonant surface enters
the plasma from the boundary.
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